

"The Strategic Plan" for Decommissioning of Fukushima Daiichi NPS

Overview of Strategic Plan for Fuel Debris Retrieval

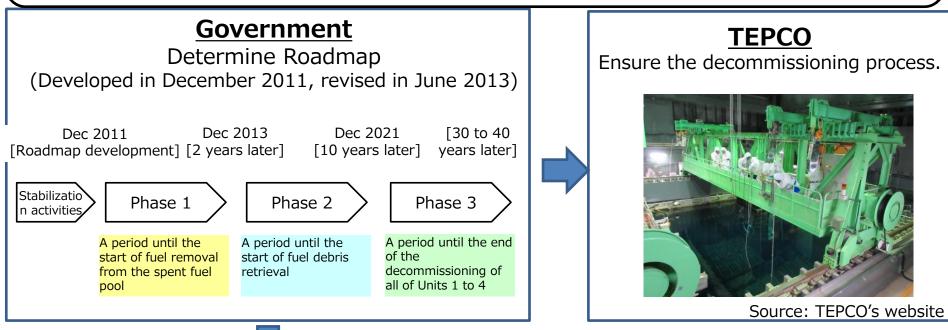
Jun 30, 2015 Nuclear Damage Compensation & Decommissioning Facilitation Corporation (NDF)

1-2

1st Version of the Strategic Plan Released!

Contents

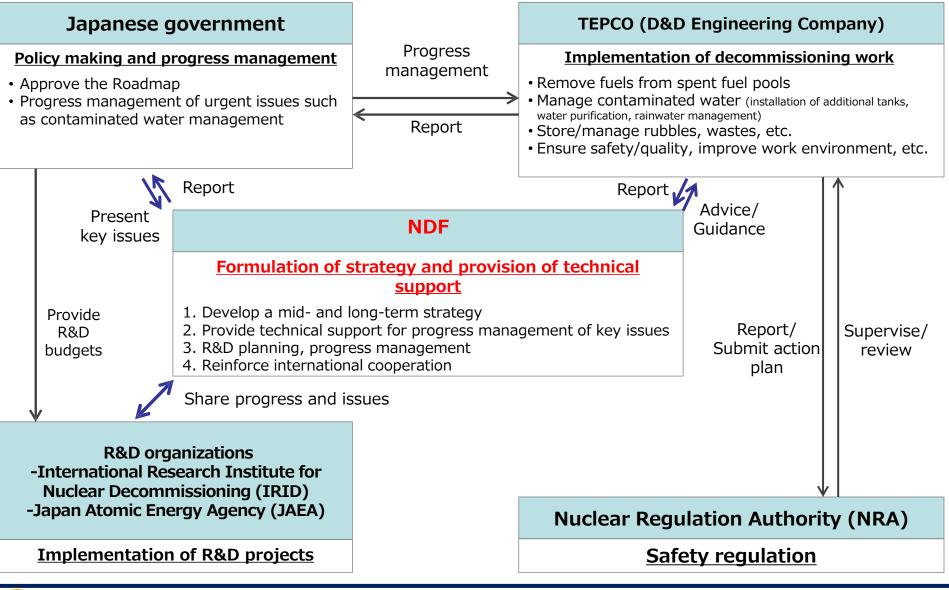
- **1. Introduction Who is NDF?**
- 2. What is Strategic Plan?
- 3. Guiding Principles for the Strategic Plan
- 4. Strategic plan for fuel debris retrieval
- 5. Strategic Plan for waste management


- ~ 200 Pages
- 6. Approach to the R&D and its overall program
- 7. Future Development of the Strategic Plan

You can get pdf version of the Strategic Plan at NDF web site below! http://www.dd.ndf.go.jp/ddwp/wpcontent/themes/theme1501/pdf/SP2015_20150623.pdf http://www.dd.ndf.go.jp/ddwp/wpcontent/themes/theme1501/pdf/SP2015_20150624_en.pdf

Establishment of Nuclear Damage Compensation & Decommissioning Facilitation Corporation (NDF)

After December 2011, the Government of Japan developed a structure to ensure the TEPCO's decommissioning process based on the master plan described in the Mid-and-Long-Term Roadmap ("Roadmap") determined by the Government.



Enhance the support structure so that TEPCO ensures the decommissioning process under the leadership of the Government.

Nuclear Damage Compensation & Decommissioning Facilitation Corporation was established on August 18, 2014. (Nuclear Damage Compensation Facilitation Corporation was reorganized.)

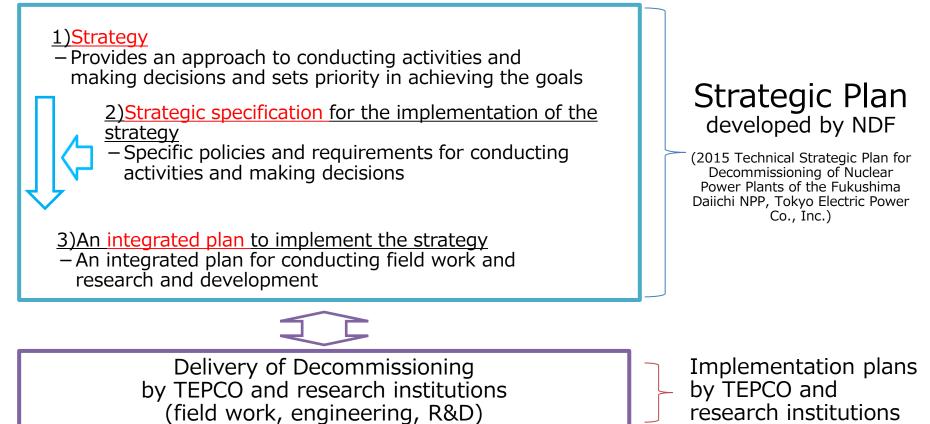
Relevant Organizations involved in Fukushima Daiichi Plant Decommissioning & Contaminated Water Management

Development of "The Strategic Plan"

As an organization of experts in a variety of technological fields, NDF develops a mid-and-long term technical strategy called "The Strategic Plan" through advices with external experts.

- Technology experts in NDF's decommissioning office (about 30 experts)
 - Plant engineering
 - Robotics
 - Civil engineering and architecture
 - Materials, analysis, monitoring
 - Fuel and nuclear reactor engineering
- Experts from external organizations (universities, JAEA and other research institutions)

<decommissioning stra<br="">1st Aug. 21, Thu 2nd Sep. 30, Tue 3rd Oct. 28, Tue* 4th Dec. 4, Thu 5th Jan. 6, Tue</decommissioning>	6 th Jan. 28, Wed 7 th Feb. 23, Mon* 8 th Mar. 26, Thu 9 th Apr. 16, Thu
 * With the partici international spectrum < Expert Committee> • Fuel Debris Retrieval 1st Oct. 20, Mon 2nd Nov. 26, Wed 3rd Dec. 22, Mon 	ecial advisors. Expert Committee 4 th Jan. 19, Mon 5 th Feb. 13, Fri
 Waste Management E 1st Nov. 26, Wed 2nd Dec. 25, Thu 3rd Jan. 26, Mon Expert-level intensiv repeatedly among Al under the lead of ND 	4 th Feb. 25, Wed 5 th Mar. 30, Mon e discussions held NRE, TEPCO and IRID



Purpose of the Strategic Plan and Relationship with the Mid-and-Long-Term Roadmap (Roadmap)

Goals and policies presented by the Government Key elements of strategies, policies and plans determined by the Government

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Reason why NDF developed Strategic Plan now!

- Changes of Situation
- Response to Uncertainty
- Response to Severe Site Situation
- Awareness of Time Axis
- Sharing the Strategy

Guiding Principles for the Strategic Plan

Principle

- The decommissioning of the Fukushima Daiichi Nuclear Power Plant is a continuous risk reduction activity to protect people and the environment from the risk of radioactive materials, resulting from severe accident.
- A risk reduction strategy along a mid- to-long-term timeline will be designed in the Strategic Plan.

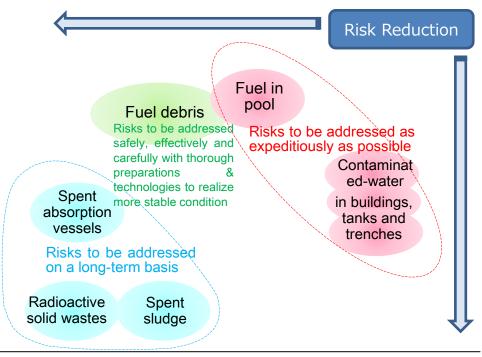
5 Guiding Principles for Risk Reduction

✓ Principle 1: Safe	Reduction of risks caused by radioactive materials*
	and work safety
	(*Environment impact and exposure to workers)
✓ Principle 2: Proven	Reliable and flexible technology
✓ Principle 3: <u>Efficient</u>	Effective utilization of resource
	(human, capital, money, and space etc.)
✓ Principle 4: <u>Timely</u>	Awareness of time axis
✓ Principle 5: Field Oriented	Emphasize actual place, actual parts and actual
	situation

Risk Reduction in Strategic Plan

Otential effect s(Hazard potential)

(i) Risk of radioactive materials

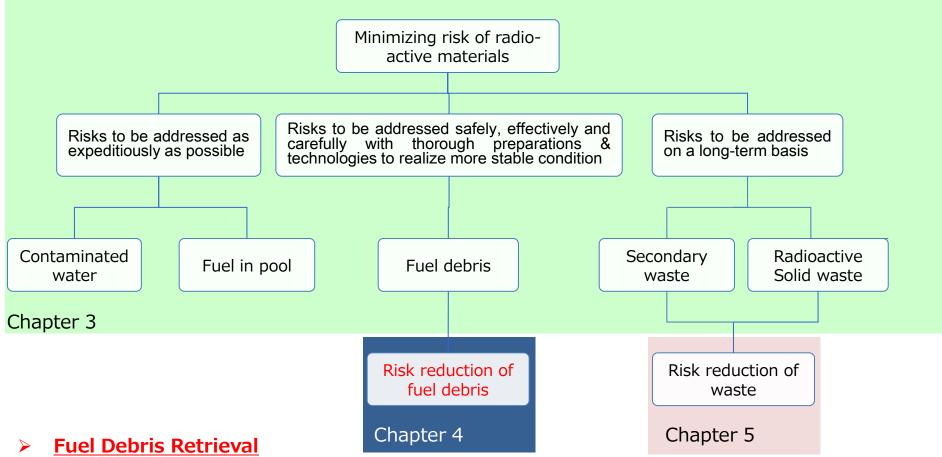

Risk = Potential effects x likelihood of loss of containment function

(ii) Potential effects

Potential effects = level of activity x physical state (solid, liquid or gas)

(iii) Likelihood of loss of containment function

Likelihood of loss of containment function = possibility of occurrence of the factor x vulnerability of the facility

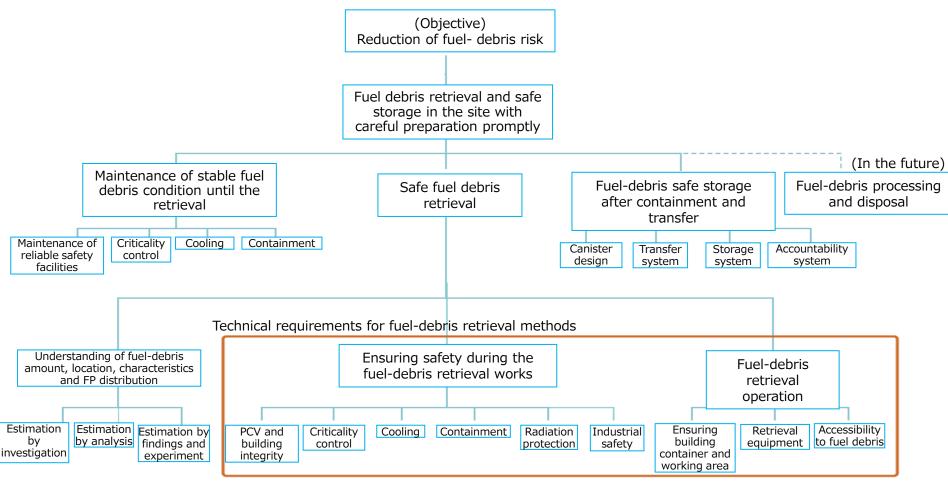

Likelihood of loss of containment function

(iv) How to reduce risk

- ➢ Move radioactive materials to a safer and more stable facility.
 → Reduce potential effects
- Decay of radioactivity and change in the physical state
 - \rightarrow Reduce the likelihood of loss of containment function

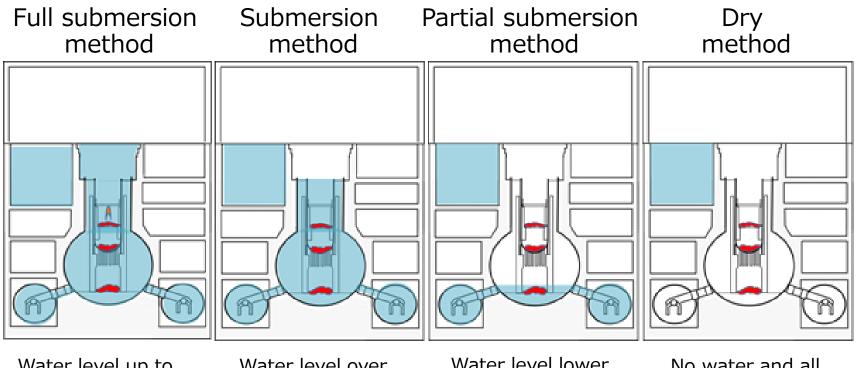
Logic Tree Diagram Regarding Risk Reduction (Summary)

 Develop a workable scenario for fuel debris retrieval assuming several methods (submersion, dry) and a combination of the methods, taking into account the status of each Unit.


Waste Management

 Develop a policy for storage management, processing and disposal from a mid-to- long-term perspective, based on the principles for safe waste disposal and appropriate waste processing.

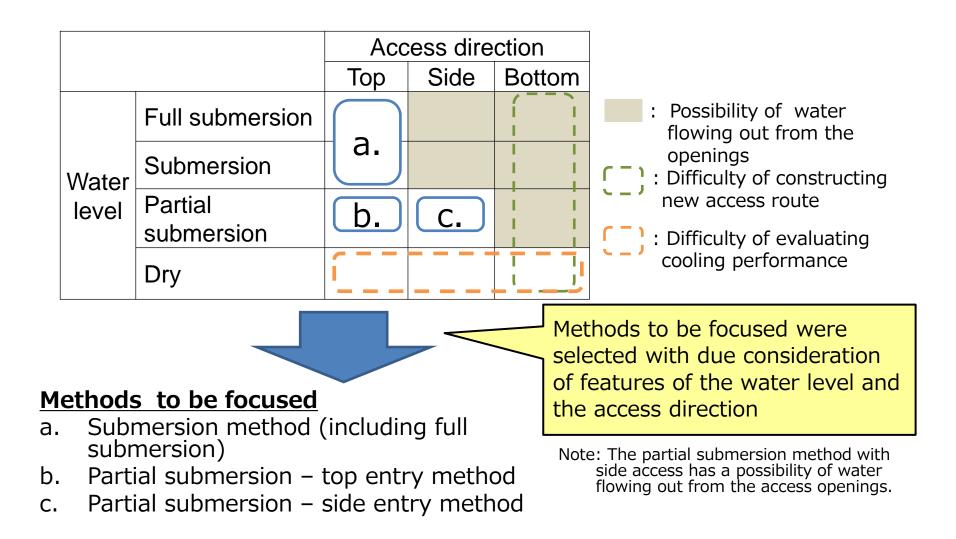
Structure of Strategic Plan for Fuel Debris Retrieval



Status of Plant Investigation and Estimated Fuel Debris Location

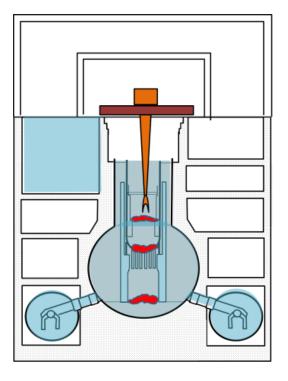
Unit	Plant investigation situation	Estimated fuel debris location
Unit 1	 The D/W water level is approx. 3 m from the RPV pedestal floor. S/C is mostly filled with water. The leakage from the sand cushion piping was confirmed. The leakage from the expansion-joint cover of the vacuum break line connected to the W/W venting piping was confirmed. Hot dose rate (several Sv/h) spot in the southeast area of the reactor building 1st floor. 	 Almost all molten fuel dropped down to the RPV lower plenum and no fuel debris remains in the core. The dropped fuel debris into the lower plenum dropped down to the RPV pedestal bottom. The dropped fuel debris in the pedestal bottom flew outside of the pedestal (probable attack to the shell).
Unit 2	 The D/W water level is approx. 30 cm from the RPV pedestal floor. The S/C water level is close to the center, which is almost the same water level to that of the torus. There is no evidence of leakage in the torus upper section. The photo of RPV pedestal inside taken from the opening confirms the structure of RPV lower region, which shows that the vessel failure will be not so large. 	• Some molten fuel dropped to the RPV lower plenum and on the pedestal floor, and the remaining stays in the core (no fuel debris estimated outside the pedestal).
Unit 3	 The D/W water level is approx. 6.5 m from the RPV-pedestal floor. (estimated from the pressure differential of D/W and S/C) S/C is mostly filled with water. The leakage from the expansion-joint of the main steam piping D was confirmed. 	• Some molten fuel dropped to the RPV lower plenum and on the pedestal floor, and the remaining stays in the core (no fuel debris estimated outside the pedestal).

Methods of Fuel Debris Retrieval according to the Water Level inside of PCV

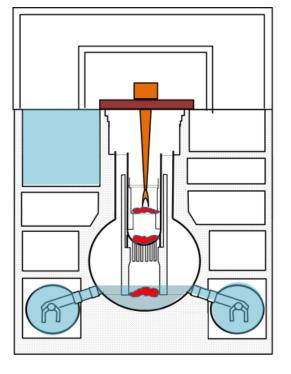

Water level up to the reactor well top

Water level over the fuel-debris location Water level lower than the upper fuel-debris location

No water and all fuel-debris is open to the air



Options for Fuel Debris Retrieval Method Considered PCV Water Level and Access Direction



14

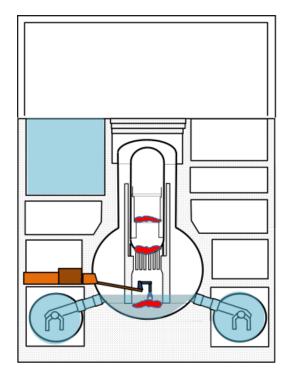

Submersion method

Image on condition that the removal of core internals above fuel debris has finished.

Partial submersion -Top entry method

Image on condition that the removal of core internals above fuel debris has finished.

Partial submersion -Side entry method

Image on condition that RPV pedestal exterior component inside PCV and the interference have been removed.

Fuel debris retrieval method scenarios and retrievable locations of fuel debris

Method			Location of debris where The retrieval method is feasible			
Scenario	Submersion- Top entry	Partial Submersion- Top entry	Partial Submersion- Side entry	Inside RPV	Inside RPV pedestal	Outside RPV pedestal
(1)	0	_	_	OK	OK	NG ¹
(2)	_	0	_	ОК	OK	NG ¹
(3)	_	_	0	NG ²	OK	ОК
(4)	1)		2)	ОК	OK	OK
(5)	2)		1)	ОК	OK	OK
(6)	_	1)	2)	ОК	OK	OK
(7)	_	2)	1)	ОК	OK	OK

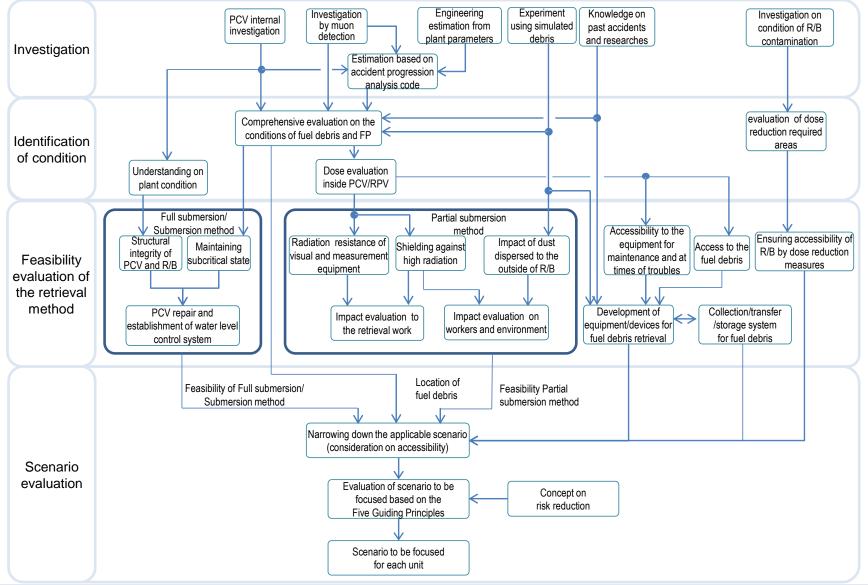
The above numbers 1) and 2) indicate the order of procedure.

1: Retrieval of fuel debris outside the RPV pedestal will be difficult if only the Top entry method is used.

2: Retrieval of fuel debris inside the RPV pedestal will be difficult if only the Side entry method is used.

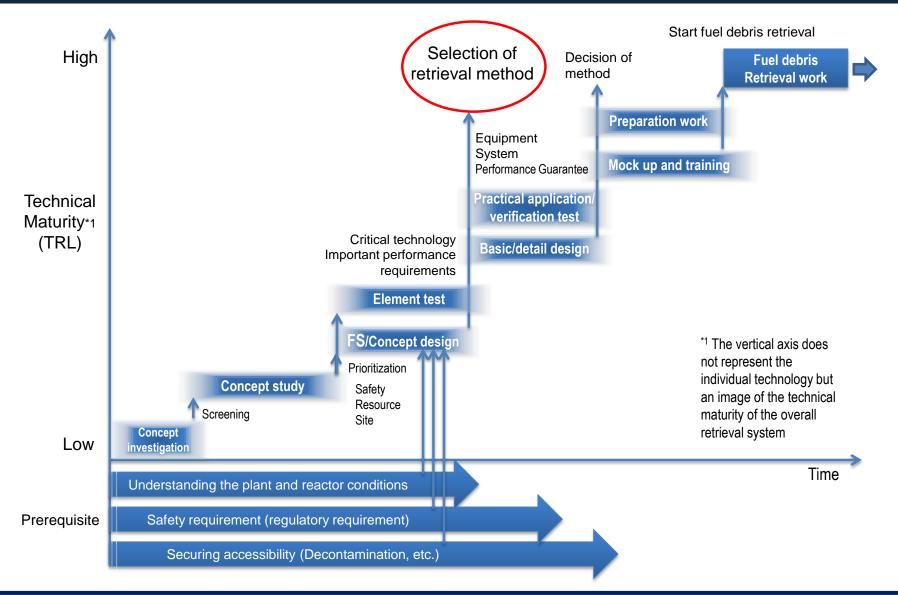
<u>с і і і</u>

.

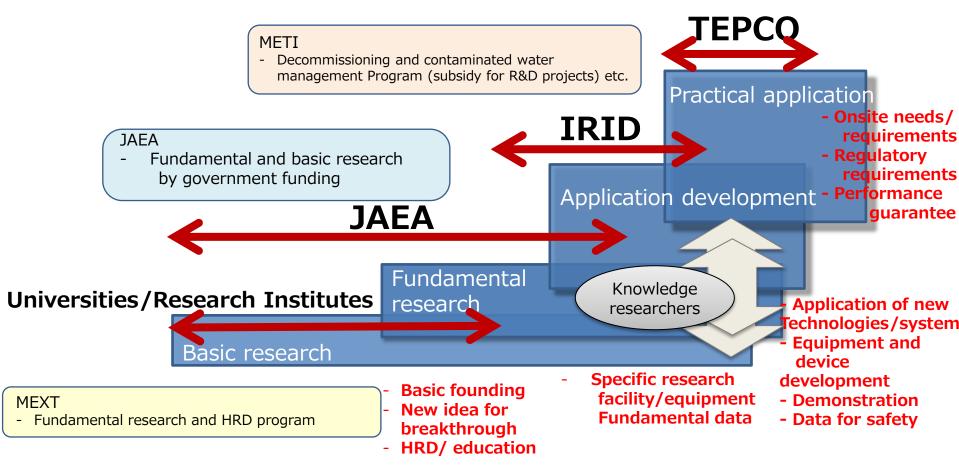

Technical Challenges of Fuel Debris Retrieval Methods

Technical Requirements	Submersion Method	Partial Submersion Method
1. Structural Integrity	\doteqdot Load by flooding and Aging	0
2. Criticality	☆ Sub-criticality at Water Level Increase	0
3. Cooling	0	☆ Debris Coolability by Air
4. Containment	☆ PCV Repair & Water Level Control	☆ Dispersion of Radioactive Dust
5. Radiation Protection	Dose Reduction in R/B	 Shielding of Fuel Debris Dose Reduction in R/B
6. Industrial Safety	0	0
7. Retrieval Equipment	Repair & Maintenance	 Radiation Resistance Repair & Maintenance
8. Accessibility to Debris	\bigcirc	O
9. System & Work Area	0	0
10. Canister, Transfer, Storage	\odot	\odot

- ☆ : Critical Challenges for the Method, ◎ : Common Important Challenges for both Methods
- O : To be confirmed


Decision Flow for Selection of Fuel-debris Retrieval Method Scenario

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation


Road towards Fuel Debris Retrieval

Overview of R&D activities related to Decommissioning of Fukushima Daiichi NPPs

 It is important to facilitate interaction and communications among researchers and engineers involved in a series of R&D initiatives.

©Nuclear Damage Compensation and Decommissioning Facilitation Corporation

Viewpoints for R&D Plan Review for Next Phase

- 1. Identify issues, through the confirmation and review process of ongoing R&D projects taking into account latest status of Fukushima Daiichi NPP.
- 2. Identify and prioritize R&D topics to be addressed, through the course of developing the "Strategic Plan."
- 3. Propose individual R&D project plan for the forthcoming term, including the efforts for new and additional issues, based upon the above two steps.

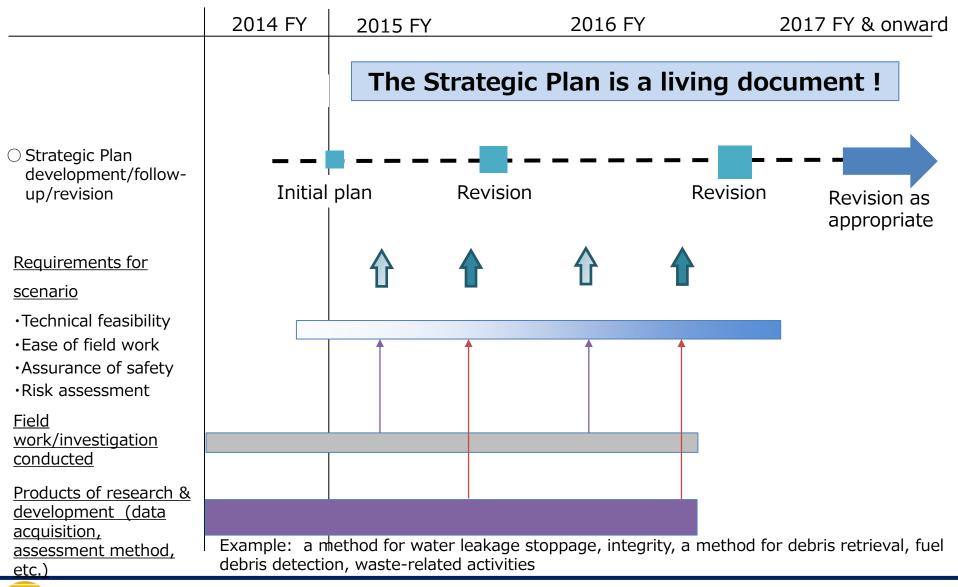
(Step 1)

21

Next Phase R&D Plan

Fuel debris retrieval

Decontamination and dose reduction


- ✓ Development of remote decontamination technologies & comprehensive dose reduction plan
- Water leakage prevention from PCV
 - Development of technology to repair leaks and water stoppage of PCV
 - ✓ Full-scale test for repairing leaks from PCV and water stoppage of PCV

Internal investigation

- \checkmark Development of technology to investigate the inside of the PCV
- Development of technology to investigate the inside of the RPV
- ✓ Sophistication of internal investigation using accident progression analysis and actual unit data
- Development of technology to detect fuel debris in the reactor (Muon)
- Fuel debris retrieval method
 - Technological development for fuel debris retrieval and internal structures
 - ✓ Technological development for collecting, transferring and storing the fuel debris
 - Technological development for integrity assessment of RPV/PCV
 - Technological development for fuel debris criticality control
- Fuel debris analysis
 - ✓ Understanding of fuel debris properties, using simulated debris and accrual debris analysis

Future Development of the Strategic Plan

