

ROSATOM STATE CORPORATION COMPANY

«Development of Technologies for Grasping and Analyzing Properties of Fuel Debris (Estimation of Aging Properties of Fuel Debris)»

Determine factors that influence aging

Determine model composition Forecast model of changing of Fuel Debris (FD) properties for the safety case for the design solutions for retrieval, transportation & container storage of the FD

Develop methodology for the synthesizing & testing of the F1 FD model samples

Develop methodology for sample's aging Manufacture samples: «Cold» samples «Hot» samples

> Carry out Tests

Develop recommendations

Develop prediction model 10 20 30 50 years

F1 applicability

Project Implementation Plan

Project Implementation Plan

4

storage & transportation

Algorithm of Manufacturing & Investigating

RIAR/KRI Model Samples Composition (Metallic\oxide phase)

Component	Mass Content	Remarks				
UO ₂	56.6%	The basis of nuclear fuel				
ZrO ₂	13.1%	Zirconium is represented as two compounds				
		to simulate its partial oxidation, it is assumed				
Zr	10%	that 50% zirconium is oxidized				
		Simulates the steel body and sub-shell				
Fe	12.6%	devices, can be replaced by stainless steel				
PuO ₂	3,0%					
		Multiply increased to study the effect on				
SrCO ₃	1.6%	aging of fuel debris				
		Multiply increased to study the effect on				
Cs ₂ CO ₃	2.5%	aging of fuel debris				
Nd ₂ O ₃	0.3%					
La ₂ O ₃	0.3%					

Sample's Manufacturing

Exercise Control Contr

Grinding of the components of the working mixture

Mixing of the components of the working mixture

calculated part of the samples dissolve in concrete to obtain the silicate phase, both with & without Cm Calculated amounts of required reagents weighed on Sartorius brand analytical balance with an accuracy of 0.001 g.

Prepared working mixture divides into two parts: for metallic phas with & without Cm

sintering tablets in an oven

Preparation of the Metallic Phase

Preparation of the Metallic Phase with Cm

Preparation of the Silicate Phase

The result: $M_{sample} = 21,7 \text{ g.}, M_{crucible} = 16,1 \text{ g.}$ The glass phase of silicate samples with Pu has a dark gray color and a matte sheen due to the complete fragmentation of the metallic FD

dark gray color

matte sheen

Concrete:

cement - 17.62 % crushed stone from dense rocks - 49.28% river sand - 24.69 % chemical additives - 0.21 % water - 8.20%

Porous chip with sharp edges

Cracked Silic

Sample without Cm

Preparation of the Silicate Phase with Cm

In three crucibles, the metallic phase samples with curium did not dissolve completely, possibly due to the difference in the composition of the concrete loaded into each crucible (the amount of rubble in the concrete in different crucibles was not the same). The bulk of the concrete evaporated, 0.14 g of concrete "entered" into the tablet. Several grains of a light brown color are visible on the graphite cup

The result: 11 brown tablets

 M_{sample} = 20,4 g., $M_{crucible}$ = 16,1 g. The glass phase of silicate samples with Pu has a dark gray color and a matte sheen due to the complete fragmentation of the metallic FD

Matrix of Prepared Samples

Sample №	Metallic Phase without Cm						
	Height, mm	Diameter, mm	Mass, kg	S open geometric surface of sample, sm ²			
К-3 – К-7	7,40 – 7,60	9,55 - 9,70	0,00214 - 0,00220	3,63 - 3,78			
	Metallic Phase with Cm						
К-15 – К-24	8,80 - 9,10	6,90 - 7,05	0,00212 - 0,00220	2,69 - 2,80			
		·	Silicate Phase without Cm				
К-10 – К-14	_	15,80 - 16,20	0,00421 - 0,00438	1,97 – 2,05			
	Silicate Phase with Cm						
К-26 – К-35	_	15,80 - 16,20	0,00421 - 0,00438	1,97 – 2,05			

Samples & Tests: Basic Set of 24 Samples

Parameters		Water 10 years	Water 20 years	Water 30 years	Water 50 years
	without ²⁴⁴ Cm	▶ ▼ •	▶ ▼ ●	▶ ♥ ●	▶ ▼ ●
		▶ ▼ ■ ●			
	1110 years	▶ ▼ ♦			
	11.00	▶▼	▶ ▼ ■ ●		
FD without silicate phase	1120 years	▶▼	▶▼ ♦		
		►▼	▶ ▼	▶ ▼ ■ ●	
	11 30 years	▶▼	▶ ▼	▶ ▼ ♦	
	I I 50 years	▶▼	▶ ▼	▶ ▼	▶ ▼ ■ ●
		▶▼	▶ ▼	▶ ▼	► ▼ ♦
	without ²⁴⁴ Cm	▶ ▼ ●	▶ ▼ ●	▶▼•	▶ ▼ ●
	I I 10 years	▶ ▼ ■ ●			
		▶ ▼ ♦			
		►▼	▶ ▼ ■ ●		
FD with silicate phase	1120 years	►▼	►▼ ♦		
		►▼	►▼	▶ ▼ ■ ●	
	1130 years	►▼	▶▼	▶ ▼ ♦	
		►▼	►▼	►▼	▶ ▼ ∎ ●
	I I 50 years	►▼	▶ ▼	►▼	► ▼ ♦

▶ Inspection (Uox) ▼ leaching ● Compression test ■ XRD ♦ SEM II = internal irradiation

Complementary Samples. Total: 36 Samples

In addition to the samples initially specified in the Research program, manufactured and investigated:

Initial samples before impact of degrading factors with & without silicate phase - on compressive strength, phase composition and microstructure

Samples with & without a silicate phase, with ²⁴⁴Cm added, which will remain in the air environment - with XRD to determine the evolution of the phase composition without the influence of chemical reactions

Three extra samples with & without a silicate phase for leaching

terms of concentrations of chemical elements

- acceleration of the course of chemical reactions under the influence of an increase in the soaking

affecting the degradation process;

temperature.

1 year \equiv 2 days Metallic & Silicate aging accelerated ~180 times 10 year \equiv 20 days Phase with Cm 50 year \equiv 100 days Leaching In solution imitation seawater $T = 95 \,{}^{0}C$ (93% of resemblance) Each 1st, 3rd & 7th day of the exposition until Equipment for leaching with the sample undergo damage equivalent to 10, ble temperature 20, 30 & 50 years the concentrations of U, Pu, The technique of "accelerated aging": Cs, Sr, Zr, Fe, La, Nd, Cm measured accelerated dose collection from α -decays for a shorter time interval due to addition of a powerful α -radiation source to the simulated material; creation of more stringent conditions The change of the leaching rate shows the (in comparison with available in PCV / RPV) in

evolution of the surface layer and the

whole sample.

15

Test Results

Experimental Leaching Results

Data on leaching rates were obtained and treated in two ways:

- 1) Traditional method. Graphic images which show dependences of leaching rates to the sample area per day of the experiment prepared in accordance with MCCI.
- 2) Dynamic method. Obtained results used to analyze summarized leaching rate of the revised nuclides excluding the influence of solutions uniting, as for each time replacement solution prepared. Data from dynamic method switched into the real time (conversion rate = 180) and averaged over time range.

	Transfer rates of U into the contact solution for samples with and without Cm change in the similar way – no impact of self-irradiation on the behavior of U. At the initial stage, the leaching rates change to an order of magnitude, during the later period – two orders of magnitude
	Pu leaching from Cm samples has the rate to an order of magnitude higher than leaching from samples without Cm. Pu leaching rate decreases by an order of magnitude in the first 20 years, the minimum Pu release rate is expected by 22-24 years. After that, the leaching rate increases again and returns to its initial values approximately
Metallic	Release of Zr from fuel debris is low and allows to conclude that the structure will stay stable and main properties of the zirconate phase of the debris will not change during long period
Phase	The transfer of Cs to contact solution takes place only during the first day of the test, after that cesium is found at the level equal to detection threshold of the analytical methodic
	Sr demonstrate high leaching rates, release for curium samples is two orders of magnitude higher than for samples without curium
	La and Nd demonstrate low leaching rates
	Cm is being released during the first days of the tests
	Fe release occurs predominantly from the curium samples and release rate increases during the whole test period
	The U leaching rate is almost constant during the period of 3-5 years, and only after that, the rate decreases
	Pu leaching rate increases in the course of degradation, passing its minimum in the period of 6-7 years
	Zr leaching rate is low and remains stable
Silicate	Cs leaching rate is low and remains stable
	The release of Sr from the products of interaction of fuel debris with concrete is very high and remains
Phase	at a high level almost during all the period: by 6-8 year the decrease of the leaching rate is over
	La and Nd demonstrate similar behavior of low leaching rate to contact solution
	Fe release from silicate samples differs from metallic phase: it is similar to release of other elements,
	mostly decreases to 10-12 years, no difference between Cm samples and samples without Cm
	observed. At the later stages red suspensions on the crucible (inside and outside) can be observed

Metallic Phase

Silicate Phase

Leaching rate, <u>Duration of «aging» in accelerated mode, days</u>			Leaching rate, Duration of «aging» in accelerated mode, days				/S				
g/m ² ·day	Calculat	ed duration of	«aging» in rea	l time mode,	years	g/m2·day	Calculated duration of «aging» in real time mode, years				
U	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50	U	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50
Metallic phase (MP) w/o Cm	4,38·10 ⁻⁵	1,5.10-5	0,3.10-5	2,2.10-5	2,1.10-5	Silicate phase (SP) w/o curium	6.5·10 ⁻⁵	4.4·10 ⁻⁵	1.10-5	1.10-5	2.9·10 ⁻⁵
Metallic phase with curium	3.10-5	0,8.10-5	0,7.10-5	0,6.10-5	1,3.10-5	Silicate phase with curium	4.10-5	1,7.10-5	1,4.10-5	2.10-5	1,8.10-5
Pu	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50	Pu	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	0-100 0-50
MP w/o curium	10-5	0,2.10-5	0,2.10-5	1,4.10-5	10-5	SP w/o curium	0.6.10-5	0.4.10-5	0.2-10-5	0.8-10-5	0.5-10-5
MP with curium	12,8.10-5	3,4.10-5	3,4.10-5	7,4.10-5	5,6·10 ⁻⁵	SP with curium	0.8.10-5	1 2.10-5	3.10-5	74.10-5	1.5.10-5
Zr	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-50</u> 20-30	<u>0-30</u> 30-50	0-50	Zr	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-50</u> 20-30	<u>0-30</u> 30-50	0-50
MP w/o curium	0,4.10-5	0,1.10-5	0,1.10-5	0,2.10-5	0,2.10-5	SP w/o curium	0.7.10-5	0.3.10-5	0.3.10-5	1.5.10-5	0.9.10-5
MP with curium	0,5.10-5	0,2.10-5	0,2.10-5	0,2.10-5	0,3.10-5	SP with curium	0.7.10-5	0.8.10-5	1.10-5	0.4.10-5	1.10-5
Cs	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50	Cs	0-20 0-10	<u>20-40</u> 10-20	40-60 20-30	<u>60-100</u> 30-50	0-100 0-50
MP w/o curium	5,2·10 ⁻⁵	0,1.10-5	0,1.10-5	0,2.10-5	1,5.10-5	SP w/o curium	2.1.10-5	0.3.10-5	0.3.10-5	0.3.10-5	0.5.10-5
MP with curium	1,3.10-5	0,2·10 ⁻⁵	0,2.10-5	0,2.10-5	0,5.10-5	SP with curium	2.5.10-5	0.3.10-5	0,3.10-5	0,3.10-5	2,1.10-5
Sr	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50	Sr	<u>0-20</u> 0-10	<u>20-40</u> 10-20	40-60 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50
MP w/o curium	4,8·10 ⁻⁵	0,3.10-5	0,4.10-5	0,5.10-5	1,5.10-5	SP w/o curium	1.8.10-4	3.3.10-5	1.9.10-5	3.4.10-5	8.5.10-5
MP with curium	22.10-5	12.10-5	4,9·10 ⁻⁵	3.10-5	6,7·10 ⁻⁵	SP with curium	1.3.10-4	6.5.10-5	8.10-5	9,1.10-5	7,7.10-5
La	<u>0-20</u> 0-10	20-40 10-20	<u>40-60</u> 20-30	60-100 30-50	<u>0-100</u> 0-50	La	<u>0-20</u> 0-10	20-40 10-20	40-60 20-30	60-100 30-50	0-100 0-50
MP w/o curium	1,2.10-5	0,5.10-5	0,5.10-5	0,6.10-5	0,7.10-5	SP w/o curium	3.5.10-5	0.8.10-6	0,9.10-6	1.10-5	1.3.10-5
MP with curium	1,4.10-5	0,6.10-5	0,6.10-5	0,8.10-5	0,9.10-5	SP with curium	2.2.10-5	0,9.10-5	1.10-5	1.10-5	1,3.10-5
Nd	<u>0-20</u> 0-10	20-40 10-20	<u>40-60</u> 20-30	60-100 30-50	<u>0-100</u> 0-50	Nd	<u>0-20</u> 0-10	20-40 10-20	40-60 20-30	60-100 30-50	0-100 0-50
MP w/o curium	11.10-5	0,5.10-5	0,5.10-5	0,7.10-5	3,7.10-5	SP w/o curium	1.3.10-4	0.8.10-5	0.8.10-5	1.1.10-5	2.7.10-5
MP with curium	12,6.10-5	0,6.10-5	0,6.10-5	0,9.10-5	3,3.10-5	SP with curium	1.10-4	0,9.10-5	1.10-5	1.10-5	3,1.10-5
Ст	<u>0-20</u> 0-10	20-40 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50	<u>0-100</u> 0-50	Cm	<u>0-20</u> 0-10	<u>20-40</u> 10-20	40-60 20-30	60-100 30-50	<u>0-100</u> 0-50
MP w/o curium	-	-	-	-	-	SP w/o curium	-	-	-	-	-
MP with curium	10-5	3,7.10-7	3,5.10-7	3,6.10-7	6,4.10-7	SP with curium	3,2.10-8	5,6.10-7	2,1.10-7	3.10-7	3,7.10-7
Fe	<u>0-20</u> 0-10	<u>20-40</u> 10-20	40-60 20-30	60-100 30-50	<u>0-100</u> 0-50	Fe	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	60-100 30-50	<u>0-100</u> 0-50
MP w/o curium	4,2.10-5	3,7.10-5	2.10-5	7,3.10-5	5,3.10-5	SP w/o curium	7,4.10-5	1.10-4	1.10-5	3,6.10-5	4,6.10-5
MP with curium	27,5.10-5	28,4.10-5	43,6.10-5	37,3.10-5	31,7.10-5	SP with curium	7,7.10-5	4.10-2	4,8.10-5	6.10-5	5,2.10-5

Formation of Red Suspensions & Sludges

Weakening of Metal Samples

	Duration of «aging» in accelerated mode, days						
	0.20			60,100			
	<u>0-20</u>	20-40	40-60	00-100			
	0-10	10-20	20-30	30-50			
The state of		Noticeable change in		External surface of the			
the external	"Smoothing" of the external surface,	geometry of the external	Macroscopic changes	samples is damaged			
surface of the	the protruding parts are removed, part	ding parts are removed, part surface of the sample,		significantly. The damage			
sample	of the pores is closed	erosion by inclusions of	(cracks, caverns)	is more noticeable for			
		iron		curium samples			
Corrosive damage	Corrosive destruction of iron particles at the sample/ contact solution boundary	Inclusion of particles of iron to the corrosions processes to a depth of more than 300 µm from the sample boundary	Destruction of particles of iron by the sample volume (1000 µm and more from the boundary), penetration of contact solution into the depth of the sample				
Structure integrity	The beginning of the formation of ring cracks around iron containing inclusions	Development of ring cracks, the appearance of first cracks crossing the grain	Covering the entire field of the sample with cracks				

1. The "metallic" samples at the initial stage have high porosity, heterogeneity and developed external surface.

2. Samples after manufacturing have large amount of isolated iron-containing inclusions (similar to steel "globules" in Chernobyl lava).

3. Development of internal defects and corrosion of certain elements will lead to the destruction of the sample as these internal defects accumulate. The rate of destruction process depends on the state of metallic (especially iron-containing) inclusions. The completion of the mass destruction of samples is associated with the exhaustion of the stock of elements included in the corrosion processes.

4. The resulting products of corrosion of metallic inclusions serve as additional "accelerator" of the destruction due to the loss of main structure-forming elements of the sample as well as due to the increase of internal stresses inside the sample, caused by the increase of the corrosion products as compared to the volumes of initial inclusions.

Weakening of Silicate Samples

	Duration of «aging» in accelerated mode, days					
	Calculated duration of «aging» in real time mode, years					
	0-20	20-40	40-60	60-100		
	0-10	10-20	20-30	30-50		
The state of	Smooth, glossy surface for		Selective leaching out of			
the external	samples with curium, matt	No noticeable	concrete matrix from the			
surface of the	surface for samples without	change in geometry	surface of the sample			
sample	curium. No deposits.	of external surface	(up to 200 µm), start of			
			surface degradation			
Corrosive damage	Corrosion destruction of particles of iron was not found even at the boundary "sample/contact solution"	Corrosion destruction of particles of iron was not found	Corrosion of metallic inclusions appear	Products of corrosions appear at the surface of sample and crucible		
Structure integrity	Structural integrity, high level of penetration of secondary uranium- plutonium phases into silicate matrix	The structure is integral, the boundary zones are "strengthened" by (U, Zr, O) phases	The surface is cracking			

1. "Silicate" samples in their initial state have smooth, glass-like surface, lower porosity (as compared to "metallic" samples).

2. Samples after manufacturing contain large quantity of isolated iron-containing inclusions (similar to steel "globules" in Chernobyl lava

1	Duration of «aging» in accelerated mode, days					
	Calculated duration of «aging» in real time mode, years					
	$\frac{0-20}{0-10}$	<u>20-40</u> 10-20	$\frac{40-60}{20-30}$	<u>60-100</u> 30-50		
Dominant phase	ZrO					
Minor phase	UO ₂ , ZrO2 –	monoclinic,	$UO_2, U_{0.1}$	₅ Zr _{0.5} O ₂ ,cub.		
Trace phases in samples w/o curium	$(U, Zr)O_x-$ orthorhombic, $(U_xZr_y)O_2$, cub.	PuO2, $U_{0.5}Zr_{0.5}O_2$, cub.	γ-Fe – cub.; FeZr2 ,cub.	γ -Fe – cub.; FeZr ₂ ,cub.; Na ₂ ZrO ₃ , cub.,		
Trace phases in samples with curium	(U, Zr)O _x – orthorhombic, (U _x Zr _y)O ₂ , cub	γ-Fe – cub.; β-Zr – cub.	α -, γ -Fe – cub. β -Zr cub.,	γ -Fe – cub.; β -Zr – cub. CmO2 and Nd2Zr2O7, - NaPu(x)O(z).		
Microstructure of samples is stable, the changes in phase composition are minor during the observed time periods						

	Duration of «aging» in accelerated mode, days					
	Calculated	duration of «a	ging» in real ti	me mode, years		
	<u>0-20</u>	<u>20-40</u>	<u>40-60</u>	<u>60-100</u>		
	0-10	10-20	20-30	30-50		
Dominant phase		UC	D_2 -cub.			
Minor phase	Pyrochlore type	phase, close to	$Eu_2Zr_2O_7 - cu$	$ab., La_2Zr_2O_7 - cub.$		
Trace phases	ases SiO_2 – tetragonal; (U, Zr)O _x – orthorhombic; U ₃ O ₇ – tetragonal 4 reflexes of unknown phase, close to UO _x					
Microstructure of samples is stable; the changes in phase composition are minimum						

during the observed periods.

The samples contain the traces of possible additional oxidation of uranium.

Mechanical strength

For the mechanical tests, samples were selected that simulate 0, 10, 20, 30 and 50 years of fuel debris aging (σ_{max} /days of experiment, MPa)

Silicate samples without

24

Expected compression force

Compression force, MPa	Duration of «aging» in accelerated mode, days					
	Calculated duration of «aging» in real time mode, years					
	<u>0-20</u>	<u>20-40</u>	<u>40-60</u>	<u>60-100</u>	<u>0-100</u>	
	0-10	10-20	20-30	30-50	0-50	
Metallic phase w/o Cm	511	560	635	639	586 (+53-75)	
Metallic phase with Cm	565*	564*	610	534	568 ⁺⁴² -34)	

Metallic samples

- Compression force has changed little over time, actually within 10-15% of statistical error
- The samples demonstrated fragile destruction, which corresponds to their structure
- For samples without Cm certain increase of compression force over time can be observed , and for Cm samples, to the opposite, the decrease of strength on the last time period can be observed

* The samples of this type have been tested for compression force without additional crucible, that's why all maximum values of the chart were used for averaging.

Compression force,	Duration of «aging» in accelerated mode, days						
MPa	Calcul	Calculated duration of «aging» in real time mode, years					
	<u>0-20</u>	<u>20-40</u>	<u>40-60</u>	<u>60-100</u>	<u>0-100</u>		
	0-10	10-20	20-30	30-50	0-50		
Silicate phase w/o Cm	118	(150-308)**	104	78	100 (+18-22)		
Silicate phase with Cm	115	77	123	61	94 (+29-33)		

Silicate samples

- More heterogeneous structure
- Fragile destruction
- Much lower values of compression force
- Decrease of strength on the latest test period can be observed (the minimum value of compression force corresponds to curium sample at the final stage).

** This sample has abnormal characteristic of destruction due to its heterogeneity – excluded from the averaging

***The averaging was made for maximum values of chart describing the destruction of the sample not taking into account the more vertical part of the chart, which refers to the strength characteristics of the crucible.

Damage to the structure of Metallic samples

	Duration of «aging» in accelerated mode, days Calculated duration of «aging» in real time mode, years					
	<u>0-20</u> 0-10	<u>20-40</u> 10-20	<u>40-60</u> 20-30	<u>60-100</u> 30-50		
The state of the external surface of the sample	"Smoothing" of the external surface, the protruding parts are removed, part of the pores is closed	Noticeable change in geometry of the external surface of the sample, erosion by inclusions of iron	Macroscopic changes (cracks, caverns)	External surface of the samples is damaged significantly. The damage is more noticeable for Cm samples		
Corrosive damage	Corrosive destruction of iron particles at the sample/ contact solution boundary	Inclusion of particles of iron to the corrosions processes to a depth of more than 300 µm from the sample boundary	Destruction of particles of iron by the sample volume (1000 µm and more from the boundary), penetration of contact solution into the depth of the sample			
Structure integrity	The beginning of the formation of ring cracks around iron containing inclusions	Development of ring cracks, the appearance of first cracks crossing the grain	Covering the entire field of the sample with cracks			

Metallic samples

- High porosity, heterogeneity, developed external surface
- Large amount of isolated iron-containing inclusions (similar to steel "globules" in Chernobyl lava)
- Development of internal defects and corrosion of certain elements lead to the destruction of the sample as these internal defect accumulate. The rate of destruction process depends on the state of metallic inclusions
- The resulting products of corrosion of metallic inclusions serve as additional "accelerator" of the destruction

Damage to the structure Silicate samples

	Duration of «aging» in accelerated mode, days			
	Calculated duration of «aging» in real time mode, years			
	<u>0-20</u>	<u>20-40</u>	40-60	<u>60-100</u>
	0-10	10-20	20-30	30-50
The state of	Smooth, glossy surface for		Selective leaching out of	
the external	samples with curium, matt	No noticeable change	concrete matrix from the	
surface of	surface for samples without	in geometry of	surface of the sample (up to	
the sample	curium. No deposits.	external surface	200 µm), start of surface	
			degradation	
Corrosive	Corrosion destruction of	Corrosion destruction		Products of
damage	particles of iron was not	of particles of iron was	Corrosion of metallic	corrosions appear at
	found even at the boundary	not found	inclusions appear	the surface of
	"sample/contact solution"	not iound		sample and crucible
Structure	Structural integrity, high	The structure is		
integrity	level of penetration of	integral, the boundary		
	secondary uranium-	zones are	The surface is cracking	
	plutonium phases into	"strengthened" by (U,		
	silicate matrix	Zr, O) phases		

Silicate samples

- Smooth, glass-like surface, lower porosity
- Large quantity of isolated iron-containing inclusions (similar to steel "globules" in Chernobyl lava
- The stability of silicate samples during the test period depends on the integrity of protective glass-like layer, and in case of destruction of this layer (due to chemical, mechanical or any other factors) the destruction rate may increase significantly

Conclusions and Recommendations

Conclusions & Recommendations

Metallic Phase

- Cumulative radiation-chemical damage leads to greater degradation of fuel fragments, than total radiation and chemical effect
- Fe is corrodible
- Ferrous hydroxide is a good coagulant of Pu and U and other elements, except for Cs, it will lead to formation of larger quantities of small particles and hazardous fine dust. Delay in removal of fuel fragments after 20-25 years after an accident can lead to complication of dose and radiation environment, because of increased emission of plutonium, its further transit into colloidal forms and solid particles of submicrometer dimension
- Despite the fact that most of Cs emitted during high-temperature processes, but approximately 10-20% of it is left in the form of cesium plutonate
- In the FD mass areas of reduced sponginess can exist, in these areas speed of degradation processes will be lower
- For handling FD of "metallic" phase, the following requirements should be taken into account:
 - \circ to develop instruments, which let work with ceramics
 - o to estimate reduction of FD strength properties in course of time
 - \circ to estimate increase of dust formation with α -active and dose-producing components
 - prolonged removal operations will lead to activation of degradation processes, after the works are started and "covering" layers are opened

Conclusions & Recommendations

Silicate Phase

- Low integral strength of matrixes and local involvement into silicate matrixes give high values of local strength.
- Time delay of degradation processes start related to protection of PCV water from intense alpha-irradiation from the MCCI surface.
- In the course of scanning electron microscopy of silicate phase, formation of secondary crystallization areas for U and Pu compounds, significantly distant from the place of fuel fragment and molten contact, in stratum of melted concrete was revealed.
- Mechanical strength of silicate samples is commensurate with strength of vitrified HLW matrixes.
- Leaching rate of controlled radionuclides of silicate samples is commensurate with leaching rates of the same radionuclides of vitrified HLW matrixes.
- Chemical stability of silicate stage in simulation water is slightly lower, than chemical stability of borosilicate glass.
- Prolonged removal operations will lead to activation of degradation processes, after the works are started and "covering" layers are opened.

Definitions

• Fuel debris (FD) – solidified melt of nuclear fuel containing materials formed in PCVs during accident at 1F, usually consist of fuel, fissile materials, fission products and structure materials (stainless steel, Zr cladding, control rod materials, concrete etc)